		DEPARTMENT OF MATHEMATI	CS	Contraction in the second			
Class Test – I Session- July – Dec 2022		Month	Month- December				
Seme	ester- B.Tech-III	Subject- Mathematics-III					
Code	- B000311(014)	Time Allowed: 2 hrs	Max	Max Marks: 40			
Note: -	 Attempt any TWO from Attempt any THREE from 	n unit II om unit III	•				
Q. No		Questions	Marks	Levels of Bloom's taxonomy	СО		
		Unit – II		La factorio			
1.A	Solve $x^{2}(y-z) p + y^{2}($	$z - x$) $q = z^2 (x - y)$	8	Applying	CO2		
1.B	Solve 4 $\frac{\partial^2 z}{\partial x^2}$ - 4 $\frac{\partial^2 z}{\partial x \partial y}$ +	$\frac{\partial^2 z}{\partial y^2} = 16 \log (x + 2y)$	8	Applying	CO2		
1.C	Solve by using method c $\frac{\partial u}{\partial x} = 2 \frac{\partial u}{\partial t} + u$	of separation of variables , solve , where $u(x, 0) = 6e^{-3x}$	8	Applying	CO2		

Unit – III							
2.A	The probability density function of a variate X is X : 0 1 2 3 4 5 6 P(X): k 3k 5k 7k 9k 11k 13k i) Find P(X < 4), P(X \ge 5), P(3 < X \le 6) ii) What will be the minimum value of k so that P(X \le 2) > 0.3	8	Evaluating	CO3			
2.B	Fit a Binomial distribution for the following data and compare the theoretical frequencies with the actual ones. X 012345f2142034228	8	Evaluating	CO3			
2.C	Out of 800 families with 5 children each, how many would you expect to have a) 3 boys b) 5 girls c) either 2 or 3 boy? Assume equal probabilities for boy and girl.	8	Applying	CO3			
2.D	In a precision bombing attack there is a 50 % chance that any bomb will strike the target .Two direct hits are needed to destroy the Target completely. How many bombs must be dropped to give a 99% chance or better of completely destroying the target?	8	Applying	CO3			

SSIPMT RAIPUR

Shri Shankaracharya Institute of Professional Management & Technology Department of Civil Engineering

Class Test – I Session: July – Dec, 2022 Month – December

Semester – 3rd Subject – Building Material, Code – B020315 (020)

Time Allowed: 2 hrs Max Marks: 40

Note: - Attempt all questions. Part (a) from each question is compulsory.

Q.* No.	Questions	Marks	Levels of Bloom's taxonomy	COs					
	Part- I								
(a)	Discuss the hydration of cement	[4]	Understand	CO1					
(b)	List the chemical composition of cement and explain their function.	[8]	Understand	CO1					
(c)	Explain initial and final setting time of cement.	[8]	Understand	CO1					
(d)	Describe the types of pozzolanic with their functions	[8]	Understand	CO1					
	Part- II								
(a)	List the various proportioning of concrete for different grade.	[4]	Understand	CO2					
(b)	Explain the factors affecting Strength and durability of Concrete	[8]	Evaluate	CO2					
(c)	Explain Properties of fresh and hardened concrete.	[8]	Create	CO2					
(d)	Illustrate any one test of hardened cocnrete.	[8]	Evaluate	CO2					

SSIPN	Department of Civil Engineering Class Test – I Session: July-December, 2022 Month – Dec Semester – 3 rd (B-Tech) Subject – IFM Code – B0003 AT Time Allowed: 2 hrs. Max Marks: 40 Part I & II, Question A is compulsory and attempt any two from B, C & D.	cember 12(020)		
No.	Questions	larks	Levels of Bloom's taxonomy	co.
	Part I			
А.	Define the following Viscosity Specific gravity and Newtonian fluid	[4]	Understand	CO1
В.	The vertical gap 2.2 cm wide of infinite extent contains a fluid of viscosity 2 Ns/m ² and specific gravity 0.9. A metallic plate 1.2 m x 1.2 m x 0.2 cm is to be lifted up with a constant velocity of 0.15 m/sec, through the gap. If the plate is in the middle of the gap, find the force required. The weight of the plate is 40 N.	[8]	Apply	CO1
C.	A differential manometer is connected at the two points A and B shown in fig. At B air pressure is 7.848 N/cm ² (abs.), find the absolute pressure at A.	[8]	Apply	COI
D.	Find the total pressure and position of centre of pressure on a triangular plate of base 4m and height 7m which is immersed in water in such a way that the plane of the plate males an angle $\tan^{-1}(\sqrt{3})$ with the free surface of the water. The base of the plate is parallel to water surface and at a depth of 3.5 m from water surface.	[8]	Apply	со
	Part II			
А.	Define the following Meta-Centre, Steady and unsteady flow and Uniform and Non-uniform flow	[4]	Understand	CO & CO
B.	The Velocity vector in a fluid flow is given $V = x^2yi + y^2z j - (2xyz+yz^2) k.$ Find the velocity and acceleration of a fluid particle at (2, 1, 3).	[8]	Apply	CO2
C.	A 40 cm diameter pipe, conveying water, branches into two pipes of diameters 30cm and 20cm respectively. If the velocity in the 40cm diameter pipe is 3 m/s. Find the discharge in this pipe. Also determine the velocity in 20cm pipe if the average velocity in 30cm diameter pipe is $2m/s$.	[8]	Apply	co
D	Derive an expression for the meta-centric height of a floating body.	[8]	Understand	CO

SSIP	Shri Sha Pur Class Sem	ankaracha s Test – I - 3 rd S	nya Instit Depart Se Subject- P	ute of Professional Manag tment of Civil Engineering ession- July-Dec, 2022 lane Surveying – I Co	gement g Month ode- B02	& Technology n-December 20314(020) Marks: 40	
	Time Allowed: 2	hrs		any Attempt any 2 questins f	rom 03	O4 and $O5$.	
Q.N.	Note: - Question Q	and Q2 a Que	re computs estions	ory. Allempi uny 2 questins j	Marks	Levels of Bloom's	CO
	a a ga a suman anna an an an an anna an anna an dar - Barana a an an anna anna an anna an anna an an	×	, T	ολοτι		taxonomy	
Q1	Find the correction for	[2]	Applying	CO1			
Ω^{2}	What is bench mark an	d its classi	fications?	an ana amin'ny	[2]	Remembering	COI
Q3	What do you mean by sensitivity of bubble tu one division is 2mm. level with bubble ce divisions out of center	"sensitive be and rad The readir enter was the staff re	ness" of b lius of curv ng taken o 1.872m. eading was	ubble tube? Determine the vature given: The length of n the staff 100m from the The bubble is moved 5 s observed to be 1.806m.	[8]	Applying	COI
04	1 The following recipr	ocal levels	were take	n with one level.	[8]	Applying	CO
ς.	Instrument at	Readi P	ngs on Q	Remarks			
	Р	1.725	2.245	Distance PQ = 200m			
	Q	2.145	3.045	RL of $P = 450.00m$			
	Determine: 1. The true difference 2. The RL of Q 3. Combined correct	e in elevat	ion betwee vature and	en P and Q. I refraction.	[8]	Understanding	СО
Q5	What do you mean by levelling?	v levelling	? what are		[0]	Understandning	
				PARI-II	[0]	Understanding	CO
Q1	What do you mean by watershed line and valley line?				[2]	Understanding	CO
Q2	Define contour map a	nd contour	· line.	ony one method of contour	[4]	Understanding	
Q3	What is interpolation of contour? Explain any one method of contour interpolation.					Annlying	CO
Q4	How contour maps can be used to determine the intervisibility between two points.					Applying	CO
Q5	What are different of with neat sketch.	haracterist	tics of cor	ntour. Support your answe	r [8]	Understanding	CC

Shri Shankaracharya Institute of Professional Management & Technology, Raipur Department of Civil Engineering Online Class Test – I Session: JULY – DEC, 2022 Month – DECEMBER Semester – 3 rd Subject – Introduction to Solid Mechanics, Time Allowed: 2 hrs. Note: - Part A is compulsory. Attempt Amy 2 from part B C D								
(• Q. No.	Questions	Marks	Levels of Bloom's	CO's			
		SECTION- I		taxonomy				
	A .	Explain Different types of stress with neat diagrams	[4]	Understand	CO1			
		A brass bar having cross-sectional area of 1000 mm2 is subjected to axial forces shown in the Fig. 1. Find the total elongation of the bar. Modulus of elasticity of brass = 100 GN/m^2						
	В.	$50 \text{ kN} \underbrace{M}_{\text{L}} \underbrace{0.6 \text{ m}}_{\text{Fig. 1}} \underbrace{20 \text{ kN}}_{\text{N}} \underbrace{10 \text{ kN}}_{\text{P}} \underbrace{10 \text{ kN}}_{\text{P}}$	[8]	Understand	CO1			
	C.	A steel cube of 50 mm side is subjected to a tensile force of 10 KN along X- direction, compressive force of 12.5 KN along y-direction and a tensile force of 7.5 KN along z-direction. Determine change in volume of the cube. Take $E = 2 \times 10^5$ N/ mm ² and Poisson's ratio = 0.3	[8]	Understand	CO1			
	D.	Calculate the total elongation of the non-uniform bar with loads as shown in figure 2. Modulus of elasticity of brass = 200 GN/m ² . The cross-section of the bar is given in figure below. $A = 360 \text{ mm}^2$ $L = 180 \text{ mm}$ $A = 480 \text{ mm}^2$ $L = 160 \text{ mm}$ $A = 300 \text{ mm}^2$ $L = 150 \text{ mm}$ $Fig. 2$	[8]	Understand	CO1			
SECTION -II								
	А.	Explain Hoop Stress.	[4]	Understand	CO1			
	В.	Explain Universal Tensile Test procedure. Draw Stress-strain curve for steel with salient points.	[8]	Understand	CO1			
	C.	Establish a relationship between E, K and G.	[8]	Understand	CO1			
	D.	A bar 35 mm in diameter was subjected to a tensile load of 54 KN and measured extension on 300 mm gauge length was 0.112 mm and change in diameter was 0.00366 mm. Calculate the Poisson's ratio and value of three modulus.	[8]	Understand	CO1			