DEPARTMENT OF MATHEMATICS											
Class Test - I		Session- July - Dec 2022				Month- December					
Semester- B.Tech-III		Subject- Mathematics-III									
Code - B000311(014)		Time Allowed: 2 hrs			Max Marks: 40						
Note: - 1) Attempt any TWO from unit II 2) Attempt any THREE from unit III											
Q. No Questions									Marks	Levels of Bloom's taxonomy	CO
Unit - II											
1.A	Solve $x^{2}(y-z) p+y^{2}(z-x) q=z^{2}(x-y)$					8	Applying	CO 2			
1.B	Solve $4 \frac{\partial^{2} z}{\partial x^{2}}-4 \frac{\partial^{2} z}{\partial x \partial y}+\frac{\partial^{2} z}{\partial y^{2}}=16 \log (x+2 y)$					8	Applying	CO2			
1.C	Solve by using method of separation of variables, solve$\frac{\partial u}{\partial x}=2 \frac{\partial u}{\partial t}+u \quad, \quad \text { where } u(x, 0)=6 e^{-3 x}$					8	Applying	CO2			
Unit - III											
2.A	The probability density function of a variate X is $\begin{array}{\|lllccccc} \mathrm{X} & : 0 & 1 & 2 & 3 & 4 & 5 & 6 \\ \mathrm{P}(\mathrm{X}): \mathrm{k} & 3 \mathrm{k} & 5 \mathrm{k} & 7 \mathrm{k} & 9 \mathrm{k} & 11 \mathrm{k} & 13 \mathrm{k} \end{array}$ i) Find $\mathrm{P}(\mathrm{X}<4), \mathrm{P}(\mathrm{X} \geq 5), \mathrm{P}(3<\mathrm{X} \leq 6)$ ii) What will be the minimum value of k so that $P(X \leq 2)>0.3$					8	Evaluating	CO3			
2.B	Fit a Binomial distribution for the following data and compare the theoretical frequencies with the actual ones.					8	Evaluating	CO3			
2.C	Out of 800 families with 5 children each, how many would you expect to have a) 3 boys b) 5 girls c) either 2 or 3 boy? Assume equal probabilities for boy and girl.					8	Applying	CO3			
2.D	In a precision bombing attack there is a 50% chance that any bomb will strike the target.Two direct hits are needed to destroy the Target completely. How many bombs must be dropped to give a 99% chance or better of completely destroying the target?					8	Applying	CO3			

SSIPMT
RAIPUR

Shri Shankaracharya Institute of Professional Management \& Technology
Department of Civil Engineering
Class Test - I Session: July - Dec, 2022 Month - December Semester $-3^{\text {rd }}$ Subject - Building Material, Code - B020315 (020)

Time Allowed: 2 hrs Max Marks: 40
Note: - Attempt all questions. Part (a) from each question is compulsory.
Q.
No.

Part-I

(a)	Discuss the hydration of cement	[4]	Understand	CO1
(b)	List the chemical composition of cement and explain their function.	[8]	Understand	CO1
(c)	Explain initial and final setting time of cement.	[8]	Understand	CO 1
(d)	Describe the types of pozzolanic with their functions	[8]	Understand	CO 1

Part- II

(a) List the various proportioning of concrete for different grade.
(b) Explain the factors affecting Strength and durability of Concrete
(c) Explain Properties of fresh and hardened concrete.
(d) Illustrate any one test of hardened cocnrete.
[4] Understand CO 2
[8]
Evaluate CO 2
Create CO2

Evaluate CO 2

Part I

A. Define the following

Viscosity, Specific gravity and Newtonian fluid
B. The vertical gap 2.2 cm wide of infinite extent contains a fluid of B. The vertical gap 2.2 cm wide of \quad viscosity $2 \mathrm{Ns} / \mathrm{m}^{2}$ and specific gravity 0.9 . A metallic plate $1.2 \mathrm{~m} \times 1.2 \mathrm{~m}$ $x 0.2 \mathrm{~cm}$ is to be lifted up with a constant velocity of $0.15 \mathrm{~m} / \mathrm{sec}$, through the gap. If the plate is in the middle of the gap, find the force required. The weight of the plate is 40 N .
A differential manometer is connected at the two points A and B shown in fig. At B air pressure is $7.848 \mathrm{~N} / \mathrm{cm}^{2}$ (abs.), find the
C. absolute pressure at A .

[4] Understand CO

Apply
CO 1
c.ebs 01
trximm
s

Shri Shankaracharya Institute of Professional Management \& Technology
 Department of Civil Engineering

Class Test - I Session- July-Dec, 2022 Month-December
Sem-3 ${ }^{\text {rd }} \quad$ Subject- Plane Surveying - I Code- B020314(020)
Time Allowed: 2 hrs
Max Marks: 40
Note: - Question Q1 and Q2 are compulsory. Attempt any 2 questins from Q3, Q4 and Q5.

Marks \begin{tabular}{c|c|c|}

\hline | Levels of |
| :---: |
| Bloom's |
| taxonomy | \& COs

\hline
\end{tabular}

PART-I

Q1 Find the correction for curvature and refraction for a distance of 1440 m .
[2] Applying CO 1

Q2 What is bench mark and its classifications?
Q3 What do you mean by "sensitiveness" of bubble tube? Determine the sensitivity of bubble tube and radius of curvature given: The length of one division is 2 mm . The reading taken on the staff 100 m from the
[2] Remembering CO 1 Applying
[8] level with bubble center was 1.872 m . The bubble is moved 5 divisions out of center the staff reading was observed to be 1.806 m .

Q4 1 The following reciprocal levels were taken with one level.

Instrument at	Readings on		Remarks
	\mathbf{P}	\mathbf{Q}	
			Distance $\mathrm{PQ}=$
P	1.725	2.245	200 m
Q	2.145	3.045	RL of $\mathrm{P}=450.00 \mathrm{~m}$

Determine:

1. The true difference in elevation between P and Q.
2. The RL of Q
3. Combined correction for curvature and refraction.

Q5 What do you mean by levelling? What are the different methods of levelling?
[8] Understanding COl

PART-II

Q1 What do you mean by watershed line and valley line?
Q2 Define contour map and contour line.
[2] Understanding CO 2

Q3 What is interpolation of contour? Explain any one method of contour interpolation.
Q4 How contour maps can be used to determine the intervisibility between two points.
Q5 What are different characteristics of contour. Support your answer
[8] Understanding CO 2 with neat sketch.

Shri Shankaracharya Institute of Professional Management \& Technology, Raipur Department of Civil Engineering

Online Class Test - I Session: JULY - DEC, 2022 Month - DECEMBER

Semester - $\mathbf{3}^{\text {rd }}$ Subject - Introduction to Solid Mechanics, Time Allowed: 2 hrs .

Subject Code - B020313 (020)
Max Marks: 40
Note: - Part A is compulsory. Attempt Any 2 from part B, C, D

Q. No.	Questions	Marks	Levels o Bloom's taxonom	cos

SECTION- I
A. Explain Different types of stress with neat diagrams

A brass bar having cross-sectional area of 1000 mm 2 is subjected to axial forces shown in the Fig. 1. Find the total elongation of the bar. Modulus of elasticity of brass $=100 \mathrm{GN} / \mathrm{m}^{2}$
B.

Fig. 1
A steel cube of 50 mm side is subjected to a tensile force of 10 KN along X-
C. direction, compressive force of 12.5 KN along y -direction and a tensile force of 7.5

KN along z-direction. Determine change in volume of the cube. Take $\mathrm{E}=2 \times 10^{5}$
Understand
COl $\mathrm{N} / \mathrm{mm}^{2}$ and Poisson's ratio $=0.3$
Calculate the total elongation of the non-uniform bar with loads as shown in figure 2. Modulus of elasticity of brass $=200 \mathrm{GN} / \mathrm{m}^{2}$. The cross-section of the bar is given in figure below.
D.

[8] Understand $\mathrm{CO1}$

Fig. 2

SECTION -II

A. Explain Hoop Stress.
B. Explain Universal Tensile Test procedure. Draw Stress-strain curve for steel with salient points.
C. Establish a relationship between E, K and G .

A bar 35 mm in diameter was subjected to a tensile load of 54 KN and measured

$[4]$	Understand	$\mathrm{CO1}$
$[8]$	Understand	CO
$[8]$	Understand	COl
$[8]$	Understand	COl

